Application Security

Sandboxing features of the Linux kernel and systemd

2025-05-22, NLUUG (Utrecht) - Michael Boelen

\$ whoami

- Michael Boelen
 - Blogger
 - Linux Audit
 - <u>linux.vooreenbeginner.nl</u>
 - meereco.nl
 - Interests
 - Linux and Unix
 - Information Security
 - Chess 🛦
 - Metal detecting
 - Open source developer
 - rkhunter / Lynis
 - Volunteer
 - Communication Commission @ NLLGG
 - Webmaster @ NLUUG
 - Participation council (primary school)
 - Neighborhood watch program
 - More at <u>michaelboelen.com</u>
 - Mastodon: @mboelen

Before we begin

- Questions?
 - Short:
 - Long: at the end
- Slides will be published
- Share your insights today:
 - Tag @mboelen and #nluug at Mastodon

This talk

- Make applications a bit more secure
 - Reduce attack surface
 - Limit impact
- Using the features of:
 - Linux (kernel)
 - systemd

• Goals:

- More secure software implementations
- Knowledge sharing
- Cooperation (system hardening)

The problem

<pre>\$ systemd-analyze security</pre>			
JNIT	EXPOSURE	PREDICATE	HAPPY
ModemManager.service	6.3	MEDIUM	<u></u>
NetworkManager.service	7.8	EXPOSED	🙁
accounts-daemon.service	5.5	MEDIUM	
alsa-state.service	9.6	UNSAFE	2
anacron.service	9.6	UNSAFE	2
avahi-daemon.service	9.6	UNSAFE	2
blueman-mechanism.service	9.6	UNSAFE	2
colord.service	3.5	ОК	U
cron.service	9.6	UNSAFE	2
cups-browsed.service	9.3	UNSAFE	2
cups.service	9.6	UNSAFE	2
dbus.service	9.5	UNSAFE	2
dm-event.service	9.5	UNSAFE	2
dmesg.service	9.6	UNSAFE	2
emergency.service	9.5	UNSAFE	2
getty@tty1.service	9.6	UNSAFE	2
getty@tty7.service	9.6	UNSAFE	2
irqbalance.service	8.9	EXPOSED	2
kerneloops.service	9.2	UNSAFE	2
lightdm.service	9.6	UNSAFE	2
lvm2-lvmpolld.service	9.5	UNSAFE	2
nintsystem.service	9.6	UNSAFE	2
networkd-dispatcher.service	9.6	UNSAFE	2
plymouth-halt.service	9.5	UNSAFE	2
plymouth-poweroff.service	9.5	UNSAFE	2
olymouth-reboot.service	9.5	UNSAFE	2
plymouth-start.service	9.5	UNSAFE	2
polkit.service	1.6	ОК	<u> </u>
power-profiles-daemon.service	5.1	MEDIUM	<u> </u>
rc-local.service	9.6	UNSAFE	2
rescue.service	9.5	UNSAFE	2

Solution: Application security

• Generic

- Patch
- Sane defaults
- Application-specific security measures

External barriers

- File system
- Security frameworks
- Sandboxing

- Security modules / Frameworks
 - AppArmor / SELinux
- Namespaces
- Control Groups (cgroups)
- Secure Computing (seccomp / seccomp-bpf)

AppArmor

- Debian / Ubuntu
- Fairly easy to use

• SELinux

- RHEL / Fedora
- Not so easy to use for beginners ¹

 $^{\rm 1}$ If there are presentations "SELinux is easy", that's a hint

Namespaces

- The Matrix!
- Available namespaces
 - Inter-Process Communication
 - Mount
 - Processes
 - Time
 - Users
 - and others...

cgroups (Control Groups)

Limit resources

Reduce access

Prioritize resources

Increase amount of time

Accounting

• Measure, billing

Control

• Freeze, snapshot, resume

seccomp

- Secure Computing
- Defines which system calls are allowed
- Policy: continue or instant kill
- Great for sandboxing
- Examples: Flatpak, systemd, snap

seccomp-bpf

- Similar to seccomp, slightly different implementation
- Using *Berkeley Packet Filter*
- Examples: Android, Chrome, Firefox, OpenSSH

Sandboxing

- Sandbox usage is still limited
 - Web browsers
 - Security-minded tools
 - Sandbox tools
 - Firejail
 - Bubblewrap
 - And... systemd!

- systemd and seccomp =
 - systemd-nspawn (containers)
 - service units

Let's take one step back: systemd in a nutshell

- What is systemd?
 - System manager
 - Service manager

- Units
 - timer
 - service
 - automount
 - mount
 - path
 - etc.

Management

- systemctl cmd MYAPP.service
 - start | stop | restart | reload | reload-or-restart
 - enable | disable | mask | unmask

Configuration

- systemctl cmd MYAPP.service
 - cat | edit

Logging

- systemctl status MYAPP.service
- journalctl -u MYAPP.service

- Getting more out of systemd
 - Units
 - Linux Audit: <u>Overview of systemd units</u>
 - Cheat sheets
 - Linux Audit: journalctl
 - Linux Audit: <u>systemctl</u>

- Changing existing units
 - Override
 - Purpose: complements initial configuration
 - How?
 - systemctl edit --full myapplication.service
 - systemctl edit myapplication.service
 - /usr/lib/systemd/system/myapplication.service.d/*.conf
 - /etc/systemd/system/myapplication.service.d/*.conf

Editing /etc/systemd/system/cron.service.d/override.conf

Anything between here and the comment below will become the new contents of the file

Lines below this comment will be discarded

/lib/systemd/system/cron.service

[Unit]

- # Description=Regular background program processing daemon
- # Documentation=man:cron(8)
- # After=remote-fs.target nss-user-lookup.target

#

- # [Service]
- # EnvironmentFile=-/etc/default/cron
- # ExecStart=/usr/sbin/cron -f \$EXTRA_OPTS
- # IgnoreSIGPIPE=false
- # KillMode=process
- # Restart=on-failure

#

- # [Install]
- # WantedBy=multi-user.target

Editing /etc/systemd/system/cron.service.d/override.conf

Anything between here and the comment below will become the new contents of the file

[Service] CPUSchedulingPolicy=idle IOSchedulingClass=idle Nice=19

Lines below this comment will be discarded

- ### /lib/systemd/system/cron.service
- # [Unit]
- # Description=Regular background program processing daemon
- # Documentation=man:cron(8)
- # After=remote-fs.target nss-user-lookup.target
- #
- # [Service]
- # EnvironmentFile=-/etc/default/cron
- # ExecStart=/usr/sbin/cron -f \$EXTRA_OPTS
- # IgnoreSIGPIPE=false
- # KillMode=process
- # Restart=on-failure
- #
- # [Install]
- # WantedBy=multi-user.target

- Example: ProtectSystem (property)
 - Marks parts of the filesystem as read-only
 - Very powerful
 - But...
 - How to discover this property?
 - How to configure?
 - When (not) to use?

- Security options for units
 - 40+ properties (and counting)
 - Most are for sandboxing
 - Available in official documentation, but...
 - Technical
 - Difficult
 - Lack of examples

Linux Audit https://linux-audit.com > systemd > settings > units > protectsystem

ProtectSystem setting - Linux Audit

6 days ago · The property ProtectSystem is a systemd unit setting used for sandboxing. It is available since systemd 214. Purpose: mark some file system paths as read-only. New to securing and tuning systemd services? Start with the how to harden a systemd service unit article to learn tuning step-by-...

freedesktop.org

https://www.freedesktop.org > software > systemd > man > system d.exec.html

systemd.exec - freedesktop.org

Moreover ProtectSystem=strict and ProtectHome=read-only are implied, thus ... OOMPolicy= setting of service units to configure how the service manager shall react to the kernel OOM killer or systemd-oomd terminating a process of the service. See systemd.service (5) for details. ...

Systemd.Unit + Systemd.Service + Systemctl + Systemd.Mount + Journalctl + Systemd-System.Conf

man 7.org

https://www.man7.org>linux>man-pages>man5>systemd-system.conf.5.html

systemd-system.conf(5) - Linux manual page - man7.org

ProtectSystem= Takes a boolean argument or the string "auto". If set to true this will remount /usr/ readonly. If set to "auto" (the default) and running in an initrd equivalent to true, otherwise false. ... It can be changed per device via the x-systemd.device-timeout= option in /etc/fstab and /etc/crypttab (see...

Searches related to protectsystem systemd

Q systemd ambientcapabilities

...

...

...

- Q systemd protectsystem full
- Q systemd capabilityboundingset
- Q systemd execstartpost
- Q systemd execstartpre
- Q systemd bind mount
- Q systemd exec configuration options
- Q systemd privatenetwork

Name

systemd.exec - Execution environment configuration

Synopsis

service.service, socket.socket, mount.mount, swap.swap

Description

Unit configuration files for services, sockets, mount points, and swap devices share a subset of configuration options which define the execution environment of spawned processes.

This man page lists the configuration options shared by these four unit types. See <u>system.d.mit</u>) for more information on the specific unit configuration files. The execution specific configuration options are configuration files, and <u>system.d.weig(s)</u>, and <u>system.d.weig(s)</u>, and <u>system.d.weig(s)</u>.

In addition, options which control resources through Linux Control Groups (cgroups) are listed in systemd.resource-control(5). Those options complement options listed here.

Implicit Dependencies

A few execution parameters result in additional, automatic dependencies to be added:

• Units with Workingbirectorys, RootDirectorys, RootDirectorys, RootDirectorys, StateBirectorys, CasteBirectorys, Logbirectorys, Logbirectorys of ConfigurationDirectorys set automatically gain dependencies of type Requires= and After= on all mount units required to access the specified paths. This is equivalent to having them listed explicitly in RequirestwontsFor-

Similarly, units with PrivateTmp= enabled automatically get mount unit dependencies for all mounts required to access /tmp/ and /var/tmp/. They will also gain an automatic After= dependency on systemd-tmpflies-setup.service(8).

Units whose standard output or error output is connected to journal or kmsg (or their combinations with console output, see below) automatically acquire dependencies of type After= on system-journald.socket.

Units using LogNamespace= will automatically gain ordering and requirement dependencies on the two socket units associated with systemd-journald@.service instances.

Paths

The following settings may be used to change a service's view of the filesystem. Please note that the paths must be absolute and must not contain a "..." path component.

ExecSearchPath+

Takes a colon separated list of absolute paths relative to which the executable used by the Evec*a (e.g. ExecStart, ExecTronent*, Environment*, Environment*

Added in version 250

WorkingDirectory

Takes a discovery pair relative to the every cervice mage: The second se

RootDirectory

Takes a directory path relative to the host's root directory (i.e. the root of the system running the service manager). Sets the root directory for executed processes, with the <a href="https://control/2014/bits/html; seeding="https://control/2014/bits/html; seeding="https://control/2014/bits https://control/2014/bits/html; seeding="https://control/2014/bits/html; seeding="https://control/2014/bits/html; seeding="https://control/2014/bits/html; seeding="https://control/2014/bits/html; seeding="https://control/2014/bits/htm

The MountAPIVES= and PrivateUsers= settings are particularly useful in conjunction with RootDirectory=. For details, see below.

If RootDirectory=RootImage= are used together with NotifyAccess= the notification socket is automatically mounted from the host into the root environment, to ensure the notification interface can work correctly.

Note that services using RootDirectory=RootImage= will not be able to log via the syslog or journal protocols to the host logging infrastructure, unless the relevant sockets are mounted from the host, specifically:

The host's os-release(5) file will be made available for the service (read-only) as /run/host/os-release. It will be updated automatically on soft reboot (see: systemd-soft-reboot.service(8)), in case the service is configured to survive it.

Example 1. Mounting logging sockets into root environment

BindReadOnlyPaths=/dev/log /run/systemd/journal/socket /run/systemd/journal/stdout

In place of the directory path a ".v/" versioned directory may be specified, see systemd.v(7) for details.

This option is only available for system services, or for services running in per-user instances of the service manager in which case Privatesisers= is implicitly enabled (requires unprivileged user namespaces support to be enabled in the kernel via the "kernel.usprivileged.usprise_clones" systel).

RootImage

Takes a path to a block device node or regular file as argument. This call is similar to horoturectory. The device node or lie system within an ABR Austa of a file system within a partition table, or a file system bierarchy from a block device node or lie system bierarchy from a block device node or lie system within an ABR Austa of a file system within a BAPT partition table, or a file system within an BABC Austa of a file system within an BBR Austa of a file system within an BABC Austa of a file system within an BABC Austa of a file system within a BAPT partition table, or a file system within a BAPT partition table with an ABR Austa of a file system within a file system within a system within a system within a system within a file syst

When Device%Dicys' is set to "iclosed" or "istrict", or set to "auto" and DeviceAllow- is set, then this setting adds /dev/loop-control with n mode, "block-loop" and "block-loop"

Units making use of RootImage= automatically gain an After= dependency on systemd-udevd.service.

The host's os-release(5) file will be made available for the service (read-only) as /run/host/os-rolease. It will be updated automatically on soft reboot (see: systemd-soft-reboot.service(8)), in case the service is configured to survive it.

In place of the image path a ".v/" versioned directory may be specified, see systemd.v(7) for details.

This option is only available for system services and is not supported for services running in per-user instances of the service manager.

Added in version 233.

Setting	Description	
CapabilityBoundingSet	Define what capabilities are allowed within the service unit	21
DeviceAllow	Allow access to a device	208
DevicePolicy	Define level of access to devices in /dev	208
ExecPaths	Define the paths from which programs can be executed	231
InaccessiblePaths	Define paths that should not be accessible	231
IPAccounting	Define if accounting on network packets and bytes should be used	235
KeyringMode	Controls kernel session keyring and define what is available to the service	235
LockPersonality	Prevent processes switching their personality, a kernel execution domain	235
MemoryDenyWriteExecute	Block creation or alteration of memory segments to become writable and executable as well	231
NoExecPaths	Exclude paths from which programs can be executed	231
NoNewPrivileges	Prevent processes from gaining new privileges	187
PrivateDevices	Only allow access to a subset of devices in /dev	209
PrivateMounts	Provides a separated mount namespace to the service	239
PrivateNetwork	Defines if access to the network interfaces of the host is possible	33
PrivatePIDs	Define a new PID namespace for the process and its children	257
PrivateTmp	Define new namespace for /tmp and /var/tmp directory	1
PrivateUsers	Define a new user namespace for the process and its children	232
ProcSubset	Define the subset of access by unit to /proc	247
ProtectClock	Limit access to clock information	245
ProtectControlGroups	Limit write access to control groups directory structure under /sys/fs/cgroup	232
ProtectHome	Define what level of access is possible to home directories	214
ProtectHostname	Defines if hostname or NIS domain name can be changed	242

- Providing an alternative:
 - Guides
 - <u>systemd service hardening</u>
 - <u>Resolving basic issues with failed systemd service</u>
 - <u>Steps to take when a service unit fails after hardening</u>
 - Unit settings (properties)
 - <u>Overview</u>
 - + Alternative description
 - + Examples
 - Ready-to-use¹ profiles
 - Hardening profiles

¹ may need adjustments depending on your distribution and configuration

Profile version: 0.4 [2025-01-06]

- # Customizations:
- # Insert here the changes you made to the profile

[Service]

- # Paths
- # Deny access to /dev/shm directory, suggested when using MemoryDenyWriteExecute=yes
- # Details: https://linux-audit.com/systemd/settings/units/inaccessiblepaths/

InaccessiblePaths=/dev/shm

- # Do not allow execution of files, except nginx itself
- # Details: https://linux-audit.com/systemd/settings/units/noexecpaths/

NoExecPaths=/

Details: https://linux-audit.com/systemd/settings/units/execpaths/

ExecPaths=/usr/sbin/nginx /usr/lib

- # Allow creation of PID file and writing to log files (access|error).log
- # Details: https://linux-audit.com/systemd/settings/units/readwritepaths/

ReadWritePaths=/run /var/log/nginx

- # Capabilities and system calls
- # Only allow: bind to ports < 1024, change file permissions/ownership so nginx workers can use them
- # Details: https://linux-audit.com/systemd/settings/units/capabilityboundingset

CapabilityBoundingSet=CAP_NET_BIND_SERVICE CAP_CHOWN CAP_DAC_OVERRIDE CAP_SETGID CAP_SETPCAP CAP_SETUID

Be aware after enabling new settings: Errors

The best kind of errors:

- Quick
- Explosive
- Instill fear and doubt

Conclusion: Awesome errors!

systemctl restart nginx.service

Job for nginx.service failed because the control process exited with error code. See "systemctl status nginx.service" and "journalctl -xeu nginx.service" for details.

svstemctl restart nginx.service Job for nginx.service failed because the control process exited with error code. See "systemctl status nginx.service" and "journalctl -xeu nginx.service" for details. systemctl status nginx.service nginx.service - A high performance web server and a reverse proxy server Loaded: loaded (/lib/systemd/system/nginx.service: enabled; preset: enabled) Drop-In: /etc/systemd/system/nginx.service.d Loverride.conf Active: failed (Result: exit-code) since Tue 2025-03-11 14:22:15 CET: 2min 8s ago Duration: 2d 4h 36.240s Docs: man:nginx(8) Process: 3235 ExecStartPre=/usr/sbin/nginx -t -g -g daemon on; master process on; (code=exited, status=203/EXEC) CPU: 26ms Mar 11 14:22:14 debian-test systemd[1]: Starting nginx.service - A high performance web server and a reverse proxy server... Mar 11 14:22:15 debian-test (nginx)[3235]: nginx.service: Failed to execute /usr/sbin/nginx: Permission denied Mar 11 14:22:15 debian-test (nginx)[3235]: nginx.service: Failed at step EXEC spawning /usr/sbin/nginx: Permission denied Mar 11 14:22:15 debian-test systemd[1]: **nginx.service: Control process exited, code=exited, status=203/EXEC** Mar 11 14:22:15 debian-test systemd[1]: nginx.service: Failed with result 'exit-code'. Mar 11 14:22:15 debian-test systemd[1]: Failed to start nginx.service - A high performance web server and a reverse proxy server

Question:

What could be the cause of the 'permission denied'?

svstemctl restart nginx.service Job for nginx.service failed because the control process exited with error code. See "systemctl status nginx.service" and "journalctl -xeu nginx.service" for details. systemctl status nginx.service nginx.service - A high performance web server and a reverse proxy server Loaded: loaded (/lib/systemd/system/nginx.service: enabled; preset: enabled) Drop-In: /etc/systemd/system/nginx.service.d Loverride.conf Active: failed (Result: exit-code) since Tue 2025-03-11 14:22:15 CET: 2min 8s ago Duration: 2d 4h 36.240s Docs: man:nginx(8) Process: 3235 ExecStartPre=/usr/sbin/nginx -t -g -g daemon on: master process on: (code=exited, status=203/EXEC) CPU: 26ms Mar 11 14:22:14 debian-test systemd[1]: Starting nginx.service - A high performance web server and a reverse proxy server... Mar 11 14:22:15 debian-test (nginx)[3235]: nginx.service: Failed to execute /usr/sbin/nginx: Permission denied Mar 11 14:22:15 debian-test (nginx)[3235]: nginx.service: Failed at step EXEC spawning /usr/sbin/nginx: Permission denied Mar 11 14:22:15 debian-test systemd[1]: nginx.service: Control process exited, code=exited, status=203/EXEC Mar 11 14:22:15 debian-test systemd[1]: nginx.service: Failed with result 'exit-code'. Mar 11 14:22:15 debian-test systemd[1]: Failed to start nginx.service - A high performance web server and a reverse proxy server

Solution: ExecPaths=/usr/sbin/nginx /usr/lib

- Troubleshooting
 - <u>Generic tips</u>
 - Apply in small steps
 - systemctl status myapplication.service
 - journalctl -u myapplication.service
 - <u>Capabilities and system calls</u>
 - Use Idd and strace
 - Use property SystemCallLog
 - SystemCallLog=~@system-service chroot

Let's harden some services together!

Help the project

- What services do you run?
- Server or desktop?

Contact

- Details: michaelboelen.com
- @mboelen

Thank you!