Let's make better*
scripts

* Improved readability, increased fault-tolerance, and more
security

Michael Boelen
michael.boelen@cisofy.com

NLUUG, November 2019

https://cisofy.com

Before we begin...

Topics (blue pill)

Why Shell Scripting?
Challenges
Reliability

Style

Tools

Tips and Tricks

Topics (red pill)

When shell (and why not)
Common mistakes

More reliable scripts

and readable...

Tools for the lazy

+Hps-anretreks (no time for that, homework)

Michael Boelen

e Open Source since 2003
o Lynis, Rootkit Hunter

e Business
o Founder of CISOfy

e Other
o Blogger at linux-audit.com
o Content creator at linuxsecurity.expert

https://cisofy.com
http://linux-audit.com
https://linuxsecurity.expert/

Let’s do this together

Assumptions Questions

You do Dev || Ops During, at the end, and after
Linux, BSD, macOS, cf_t%, the talk

Created a script before

Input welcome Share Y
Alternatives, feedback @mboelen @nluug #nluug

Lynis

Security: system auditing tool
2007

GPLv3

25000+ lines of code

POSIX

#!/bin/sh

My goals for today

1. Share my knowledge
2. Learn from yours
3. Improve your project (or mine)

Why Shell Scripting?

Why?

e Powerful
e Quick
e Low on dependencies

11

What?

Shell scripts = glue

XTREME
PCOWER

AID EYB IN SE(ONDS.

E

§s

01001 (3 g)

INSTANT ADHESIVE

12

Potential

Small scripts can
grow...

. and become an
open source project!

"

»m

Growing your

open SOUI’CQ e o -

project .

13

Why not?

Challenges and Common Mistakes

Challenge 1: #!/bin/?

Shell Pros Cons

sh Portable Not all features available
bash Features Not default on non-Linux
ash/dash Portable and fast Some features missing
ksh Features and fast Not default on Linux

zsh Features Not default

17

Challenge 1: #!/bin/?

Portable sh
Your company only bash
For yourself pick something

Tip: use #!/usr/bin/env bash

18

Challenge 2: Readability

1 #l/bin/sh

2 var_with_value="red"

3 : ${var_with_value:="blue"}
4 echo "${var_with_value}"

Red or Blue?

19

Challenge 2: Readability

. ${var_with_value:="blue"}

Assign a value when being empty or unset

20

Challenge 3: The Unexpected

#!/bin/sh

filename="test me.txt"

if [$filename = "test me.txt"]; then
echo "Filename is correct"

fi

3: [: test: unexpected operator

21

You VS Script

Find the flaw (1)

1 #l/bin/sh
2 chroot=%1
3 rm -rf $chroot/usr/lib/ssl

23

Find the flaw (1)

1 #l/bin/sh
2 chroot=%1
3 rm -rf $chroot/usr/lib/ssl

24

You VS Script
1-0

Find the flaw (2)

cat /etc/passwd | grep michael

Goal: retrieve details for user ‘michael’

26

Find the flaw (2)

cat /etc/passwd | grep michael

Better:

grepraichaeletefpasswd

grep "*michael:" /etc/passwd

awk -F: {if($1=="michael") print}' /etc/passwd
getent passwd michael

27

You VS Script
2-0

Find the flaw (2)

1 if [-d $i]

2 then

3 echo "$iis a directory! Yay!"
4 else

5 echo "$iis not a directory!"

6 fi

29

Find the flaw (2)

if [-d $ill
then
echo "$i is a directory!"
else

echo "$i is not a directory!"
fi

30

You VS Script
3-0

Style

Why style matters

e Craftsmanship
e Code reviews
e Bugs

33

Example

Option 1
if ["${var}"

= "text"]; then

echo "found text"

fi

Option 2
["${var}" =

"text"] && echo "found text"

34

Example: be concise?

Option 1
command
if [$7 -ne 0]; then
echo "command failed"; exit 1
fi
Option 2
command || { echo "command failed"; exit 1; }
Option 3
if | command; then echo "command failed"; exit 1; fi

35

var or VAR?

var
Few variables
Few times used

VAR
Many variables
Used a lot in script

36

Commands

Use full options

--quiet instead of -g
--verbose instead -v
etc

37

Style ¢

Table of Contents

Shell Files and
Interpreter
Invocation
Environment
Comments

Formatting

Features and Bugs

Naming
Conventions
Calling Commands

Conclusion

uide

Shell Style Guide

Revision 1.26

Paul Armstrong
Too many more to mention

Each style point has a summary for which additional information is available by toggling
the accompanying arrow button that looks this way: P | . You may toggle all summaries
with the big arrow button: o

> ‘ Toggle all summaries

File Extensions SUID/SGID

STDOUT vs STDERR

File Header Function Comments Implementation Comments TODO Comments

Indentation Line Length and Long Strings Pipelines Loops Case statement

Variable expansion Quoting

Command Substitution Test, [and [[Testing Strings Wildcard Expansion of Filenames Eval
Pipes to While

Function Names Variable Names Constants and Environment Variable Names
Source Filenames Read-only Variables Use Local Variables Function Location main

Checking Return Values Builtin Commands vs. External Commands

38

https://google.github.io/styleguide/shell.xml

Focus on reliability

Reliability

Quality

Do(n’'t) make assumptions
Expect the unexpected
Consider worst case scenario
Practice defensive programming

40

Defensive programming

Wikipedia:
“Is a form of defensive design intended to ensure the

continuing function of a piece of software under unforeseen
circumstances.”

“oractices are often used where high availability, safety or
security is needed.”

41

Defenses

Intended operating system?

1 #!/bin/sh
2 if [1 "$(uname)" = "Linux"]; then

3
4
5 fi

echo "This is not a Linux system and unsupported”
exit 1

42

Defenses

1 #!/bin/sh
2 if ! $(awk -F="{if($1 == "NAME" \

3 && $2 ~ /MN"CentOS|Ubuntu"$/){rc = 1}; \
4 {exit rc}}' /etc/os-release 2> /dev/null)

5 then

6 echo "Not CentOS or Ubuntu”

[exit1

8 fi

43

Defenses

set -0 nounset
(set -u)

Stop at empty variable
Useful for all scripts

44

Defenses

set -0 errexit
(set -e)

Exit upon $? -gt 0
Useful for scripts with dependant tasks
Use command || true to allow exception

45

Defenses

set -0 pipefail

Useful for scripts with pipes: mysqgldump | gzip
(Not POSIX...)

46

Defenses

set -0 noglob
(set -f)

Disable globbing (e.g. *)
Useful for scripts which deals with unknown
files

47

Defenses

set -0 noclobber
(set -C)

Don’t truncate files, unless >| is used

48

Defenses

1 #!/bin/sh
2 set -0 noclobber

3 MYLOG="myscript.log"
4 echo "$(date --rfc-3339=seconds) Start of script" >| ${MYLOG}

5 echo "$(date --rfc-3339=seconds) Something" > ${MYLOG}

11: .Iscript: cannot create myscript.log: File exists

49

Defenses

Caveat of set options

Enable with - (minus)
Disable with + (plus)

Learn more: The Set Builtin

50

https://www.gnu.org/software/bash/manual/html_node/The-Set-Builtin.html

Defenses

Reset localization

export LC_ALL=C

51

Defenses

Execution path

export PATH="/bin:/sbin:/usr/bin:/usr/sbin"

52

Defenses

Use quotes and curly brackets, they are free

' $foo = "bar"]
"$foo" = "bar"]
- "${foo}" = "bar"]

53

Defenses

Read-only variables
readonly MYVAR="$(hostname -s)"

(Not POSIX...)

o4

Defenses

Use traps
trap cleanup INT TERM

trap status USR1

99

Defenses

Untrap
trap - EXIT

56

Defenses

Temporary files

mktemp /tmp/data. XXXXXXXXXX

o7

Tools

Linting

IS SHOWING A LOT Y WHAT CAN
OF WARNINGS! | DO?

bash -n

$ echo 'myvar="TEST' | bash -n

bash: line 1: unexpected EOF while looking for matching ™
bash: line 2: syntax error: unexpected end of file

17: ./sync-vm-backups-to-usb: Syntax error: "(" unexpected (expecting "then")

Alternative: bash -n script

60

sh

e Name?
e Formatting

https://qithub.com/mvdan/sh

usage: shfmt [flags] [path ...]

If no arguments are given, standard input will be used. If a given path
is a directory, it will be recursively searched for shell files - both
by filename extension and by shebang.

-version show version and exit

list files whose formatting differs from shfmt's
write result to file instead of stdout

error with a diff when the formatting differs
simplify the code

Parser options:

-ln str language variant to parse (bash/posix/mksh, default "bash")
-p shorthand for -ln=posix

Printer options:

-1 uint indent: 0 for tabs (default), >0 for number of spaces
-bn binary ops like && and | may start a line
-ci switch cases will be indented

redirect operators will be followed by a space

keep column alignment paddings

minify program to reduce its size (implies -s)

Utilities:

-f recursively find all shell files and print the paths
-tojson print syntax tree to stdout as a typed JSON

https://github.com/mvdan/sh

sh: POSIX check

$ echo ‘((total=5*7))’ | ./shfmt -p

((total=5%7))

$ echo 'my_array=(foo bar)' | ./shfmt -p

<standard input>:1:10: arrays are a bash/mksh feature

62

Tool: checkbashisms

$ checkbashisms

Usage: checkbashisms [-n] [-f] [-X] script ...
or: checkbashisms --help
or: checkbashisms --version

This script performs basic checks for the presence of
bashisms

in /bin/sh scripts and the lack of bashisms in /bin/bash
ones.

63

Tool: checkbashisms

possible bashism in /development/lynis/include/functions line 2417 (type):
if type -t typeset; then

possible bashism in /development/lynis/include/functions line 2418 (typeset):
typeset -r $1

64

Tool: ShellCheck

Usage: shellcheck [OPTIONS...] FILES...
--check-sourced Include warnings from sourced files
--color[=WHEN] Use color (auto, always, never)
--include=CODE1,CODE2.. Consider only given types of warnings
--exclude=CODE1,CODE2.. Exclude types of warnings
--format=FORMAT Output format (checkstyle, diff, gcc, json, json1, quiet, tty)
--enable=check1,check2.. List of optional checks to enable (or 'all')
--source-path=SOURCEPATHS Specify path when looking for sourced files ("SCRIPTDIR" for script's dir)
--shell=SHELLNAME Specify dialect (sh, bash, dash, ksh)
--severity=SEVERITY Minimum severity of errors to consider (error, warning, info, style)

--external-sources Allow 'source' outside of FILES

65

Tool: aspell

Grammar check?

66

Tool: Automated testing
Verify expectations

Projects:

e Bash Automated Testing System
e shUnit2

e shpec

67

https://github.com/bats-core/bats-core
https://github.com/kward/shunit2
https://github.com/rylnd/shpec

Conclusions

Scripts = glue

Portability or features

Use other language when needed
Protect variables

Check your scripts

68

What questions do you have?

Get connected

e Twitter (@mboelen)
e LinkedIn (Michael Boelen)

69

https://twitter.com/mboelen
https://nl.linkedin.com/in/mboelen

Tips and Tricks

POSIX

Useful links

The Open Group Base Specifications Issue 7, 2018 edition

Base Definitions

1. Introduction
2. Conformance
Shell & Utilities 3. Definitions
4. General Concepts
— Shell Command Language and Ultilities 5. File Format Notation
6. Character Set
sass 7. Locale
Utilities 8. Environment Variables
9. Reqgular Expressions
« admin 10. Directory Structure and Devices
« alias 11. General Terminal Interface
e ar 12. Utility Conventions
« asa 13. Headers
o at
« awk

73

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/

When to use bash

declare/typeset Define a variable type (integer, array)
arrays Data entries
type Describe command

extended globbing

Expand file names

for loops with integers

for ((i=0; i<10; i++)); do echo $i; done

extended operator

if ["$1" =~ Am*$]]; then

and more...

74

[and []
[

POSIX
Binary and built-in
Basic comparisons

L[

Not POSIX
Keyword
Advanced features

75

Builtins VS binaries

Differences Commands

e Builtin has lower overhead enable -a | awk {print $2}'

e Binary may have more compgen -b
features builtin
man builtins

command -v cd
type -a |

76

Variables

POSIX bash ksh
Scope global global, unless ‘local’ is used global or local (based on
function or funcname())
Local overrides global? | yes no yes

77

Variables

Variable possibly unset? Use:
if ["${name:-}" = "Michael"]; then

fi

78

Screen output

Use printf instead of echo

Output of echo strongly depends on flags and
how it handles escape sequences.

79

Dealing with fatal errors

#!/bin/sh
Fatal() {
msg="%${1:-"Unknown error"}"
logger "${msg}"
echo "Fatal error: ${msg}"
optional: call cleanup?
exit 1

}

command || Fatal "Something happened"

80

Versioning

Semantic versioning!

Major.Minor.Patch

Learn more: semver.org
81

https://semver.org/

Common issues with software

No clear license
Unclear goal
Authorship
Versioning
Changelog missing

82

Changelog
Keep a changelog

e History
e Trust
e Troubleshooting

Learn more: keepachangelog.com

https://keepachangelog.com/

Options

--full-throttle-engine, -f
--help, -h, or help
--version, -V

https://github.com/docopt/docopts

Learn more: docopt.org

$
Ly

./lynis show help
nis 2.4.1 -

Commands:

Us

op

e 'lynis show help

tions:

-auditor

--check-all (-c)
--config

--cronjob (--cron)
- -debug
--developer

--help (-h)
--license-key
--log-file
--manpage (--man)
--no-colors --no-log
--pentest
--profile
--plugins-dir
--quiet (-q)
--quick (-Q)

' to see details

84

https://github.com/docopt/docopts
http://docopt.org/

Troubleshooting

Use ‘set’ options for debugging:
-V (verbose) - input is written stderr
-X (xtrace) - show what is executed

85

FOSS tool? Focus areas

Basics Quality

Project description Changelog
Tool category Popularity
Typical user Documentation
License Code

Author Releases
Language Usage
Keywords Installation

Latest release Ease of use

86

Tool review

LSE top 10 | Lynis (2)

Tool and Usage

Project details
Inception

License

Programming language
Author

Latest release

Project health

This score is calculated by different factors, like project age, last release date, etc.

2007

GPLV3

shell script
Michael Boelen

2.6.8 [2018-08-23]

87

Let’s torn down something!

#!/bin/sh

set -u

hostname=$(hostname)

lockfile=/var/lock/create-backups

timestamp=$(date "+%s")

today=$(date "+%F")

gpgkey=$(gpg --keyid-format LONG --list-keys backup@rootkit.nl 2> /dev/null | awk '/*pub/ { print $2 }' | awk -F/ '{ print $2 }' | head -1)

if [-z "${hostname}"]; then echo "Error: no hostname found"; exit 1; fi

if [! -z "${lockfile}"]; then
if [-f ${lockfile}]; then
echo "Error: Backup still running. Removing lock file to prevent backup script running next day"
rm ${lockfile}
exit 1
fi
fi
touch ${lockfile}

Add a daily timestamp to the file for restore checking

echo "${hostname}-${timestamp}-${today}" > /etc/backup.data

88

Useful reads

Bash documentation:; https://www.gnu.org/software/bash/manual/html node/

The Bash Hackers Wiki: https://wiki-dev.bash-hackers.org/
Bash pitfalls: http://mywiki.wooledge.org/BashPitfalls

Cheat sheet: https://devhints.io/bash

Rich’s sh (POSIX shell) tricks: www.etalabs.net/sh_tricks.html

And check out Lynis source code: https://github.com/CISOfy/lynis

89

https://www.gnu.org/software/bash/manual/html_node/
https://wiki-dev.bash-hackers.org/
http://mywiki.wooledge.org/BashPitfalls
https://devhints.io/bash
http://www.etalabs.net/sh_tricks.html
https://github.com/CISOfy/lynis

Credits

Images

Where possible the origin of the used images are included in the slides. Some came without an origin from social media
and therefore have no source. If you are the owner, let us know and we add the source.

90

Ben Nadel
@BenNadel

Nothing makes you more humble
than having to maintain a single
codebase for years. Only then do
you really get see the full extent of
your poor choices and ill-informed
thinking. | feel lucky to have this
learning opportunity.

15:00 - 10 Nov 19 - TweetDeck

